Some theorems on vector spaces and the axiom of choice

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Restricted Lindenbaum Theorems Equivalent to the Axiom of Choice

Dzik (1981) gives a direct proof of the axiom of choice from the generalized Lindenbaum extension theorem LET. The converse is part of every decent logical education. Inspection of Dzik’s proof shows that its premise let attributes a very special version of the Lindenbaum extension property to a very special class of deductive systems. The problem therefore arises of giving a direct proof, not ...

متن کامل

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

Metric spaces and the axiom of choice

We shall start with some definitions from topology. First of all, a metric space is a topological space whose topology is determined by a metric. A metric on a topological space X is a function d from X × X to R , the reals, which has the following properties: For all x, y, z ∈ X , (a) d(x, y) ≥ 0, (b) d(x, x) = 0, (c) if d(x, y) = 0, then x = y, (d) d(x, y) = d(y, x), and (e) d(x, y) + d(y, z)...

متن کامل

Paracompactness of Metric Spaces and the Axiom of Multiple Choice

The axiom of multiple choice implies that metric spaces are paracompact but the reverse implication cannot be proved in set theory without the axiom of choice. 1. Background, Definitions and Summary of Results. Working in set theory without the axiom of choice we study the deductive strength of the assertion MP: Metric spaces are paracompact. (Definitions are given below.) MP was first proved i...

متن کامل

Products of compact spaces and the axiom of choice II

This is a continuation of [dhhkr]. We study the Tychonoff Compactness Theorem for various definitions of compact and for various types of spaces, (first and second countable spaces, Hausdorff spaces, and subspaces of R). We also study well ordered Tychonoff products and the effect that the multiple choice axiom has on such products.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Mathematicae

سال: 1964

ISSN: 0016-2736,1730-6329

DOI: 10.4064/fm-54-1-95-107